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Abstract

This paper deals with the generalization of the field method to weakly non-linear vibrational systems with
one degree of freedom. The field co-ordinate and field momentum approaches are combined with the
method of multiple time scales in order to obtain the amplitude and phase of oscillations in the first
approximation. Apart from the fact that the algorithm of obtaining motion is condensed for the cases of a
free vibrational system and system with slowly varying parameters, in this paper the field method is
extended to a parametrically excited system and system with external excitation.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

The well-known Hamilton–Jacobi theory is suitable for studying conservative systems, which
are completely describable by Hamiltonians of systems. However, for the case of non-conservative
ones it fails to be applicable. That fact was motivating for Vujanovic and his co-workers to
formulate a parallel method, the field method [1–6], so as not to have such a limiting condition.
Although these two methods have some similarities, there are also some differences between

them. First, in Hamilton’s mechanics generalized momenta are considered to be the field of the
gradient vector of the scalar function possessing the physical meaning of the Hamiltonian action.
In Vujanovic’ method the role of the field has one of the state variables, i.e., the generalized co-
ordinate (that is known as the generalized co-ordinate approach) or the generalized momentum
(generalized momentum approach). Therefore, the field is a quantity directly involved in the
dynamics of a system. Secondly, neither of these two methods looks for a solution directly from
the equations of motion. They find it through the complete integral of a certain partial differential
equation of the first order. The Hamilton–Jacobi equation is strictly non-linear with respect to the
momentum gradient and contains ðn þ 1Þ independent variables (n—the number of degrees of
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freedom of the system), while, the so-called basic field equation in Vujanovic’ theory is quasi-
linear with 2n independent variables. Although a general method for finding its integral does not
exist, quasi-linearity frequently makes it more easily solvable. The same problem arises in the
Hamilton–Jacobi method, especially when the separation of variables is not possible.
Furthermore, the comparison of these two methods shows that motion in both cases follows
from an algebraic procedure on the complete integral.
Finally, what attracts attention is the applicability of these two methods to the theory of

vibrations. Among methods based on the Hamilton–Jacobi theory some approximate methods
are developed. The method of variation of the constants [7], the von Zeipel method [7,8] and the
method of Hori and Deprit [9] are the most popular. The first one (thanks to the combination with
the method of averaging) gives the solution in the first approximation only. The method
developed by von Zeipel includes the canonical transformations of the old variables to the new
ones. The lack of this method is that some steps of the procedure contain both old and new
variables simultaneously. Hori and Deprit developed the method based on Lee’s transformations,
which is canonically invariant but very strenuous.
While the Hamilton–Jacobi method has not been related to the method of multiple scales,

Vujanovic’s field method gave approximate asymptotic solution of rheo-linear and weakly non-
linear problems by applying two time scales expansion to the basic field concept [3–5]. The
procedure given in these references may seem a bit far-fetched, especially because of the variety of
formal transformations during the process of finding the solution.
This paper is the generalization of the Vujanovic’s method for the non-Hamiltonian system

whose mathematical model represents a one-degree-of-freedom mechanical system:

’x ¼ p;

’p ¼ �o2x þ eFðx; p; tÞ; ð1Þ

where x is a generalized co-ordinate, p is a generalized momentum, o is a parameter of the system,
t is the time, e is a small parameter ð0oe51Þ; F is a given non-linear function depending on x; p

and t; while an overdot denotes differentiation with respect to time.
This generalization leads to the first order differential equation for the amplitude and phase of

motion in the first approximation. These equations have forms equivalent to ones usually
obtained by some other approximate methods, such as the method of multiple scales [7] or
Bogoliubov–Mitropolski method [9]. This fact sets off the field method expanding its primary
purpose to a wider perspective.
Apart from the fact that the algorithm of obtaining motion is condensed for the cases of a free

vibrational system and system with slowly varying parameters, in this paper the Vujanovic’s
method is extended to a parametrically excited system and system with external excitation, which
have not been studied by the field method before.

2. Basis of the field method

Let the differential equations of a mechanical system be of the following form:

’x1 ¼ X1ðt; x1;x2Þ; ’x2 ¼ X2ðt; x1;x2Þ; ð2Þ

where x1; x2 are the state variables of the system (generalized co-ordinate or momentum).
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The basis supposition of the field method is that one of the state variables can be interpreted as
a field depending on time t and the rest of variables, i.e.

x1 ¼ Uðt;x2Þ: ð3Þ

Instead of finding the solution of Eq. (2) directly, Vujanovic [1–5] suggests deriving it through
the basic equation:

@U

@t
þ

@U

@x2
X2 � X1ðt;U ;x2Þ ¼ 0; ð4Þ

obtained by differentiating Eq. (3) with respect to time and using the Eqs. (2).
Its complete solution

x1 ¼ Uðt; x2;C1;C2Þ; ð5Þ

depends on two arbitrary constants Ci:
If the system is formulated as an initial value problems:

x1ð0Þ ¼ x10; x2ð0Þ ¼ x20; ð6Þ

one of the constants can be expressed as

C1 ¼ C1ðC2; x10; x20Þ: ð7Þ

Then solution (5) transforms into the conditioned form solution:

x1 ¼ %Uðt;x2;C2;x10;x20Þ: ð8Þ

Theorem 1 (Vujanovic’s theorem [1–5]). The solution of system (1) with initial conditions (6) can be
found from the conditioned form solution (8) and the algebraic equation:

@ %U

@C2
¼ 0: ð9Þ

The previously given concept of the field method is applied to the weakly non-linear vibrational
system (1). Non-linearity of the system requires that this concept be confined with the method of
multiple scales. Depending on which state variable has been chosen for the field, the field co-
ordinate and field momentum approaches are applied. Since both of approaches have their own
features, they will be demonstrated separately.

3. Generalization of a field co-ordinate approach

First, system (1) is analyzed for the case when, in accordance with the notation from the
previous section, x1 � x;x2 � p: Choosing the co-ordinate x for the field

x ¼ Uðt; pÞ; ð10Þ

it depends on time t and the momentum p: The basic equation (4) is of the form

@U

@t
þ
@U

@p
½�o2U þ eF ðU ; p; tÞ� � p ¼ 0: ð11Þ
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To find the complete solution (5) of this weakly non-linear equation in the closed form is
frequently impossible. An approximate solution can be accomplished by applying the technique of
multiple scales in the first approximation and introducing two independent variables [7]:

T ¼ t; t ¼ et: ð12Þ

Thus, the field and the momentum can be developed asymptotically in powers of the small
parameter e as follows:

UðT ; p; eÞ ¼ U0ðT ; t; p0Þ þ eU1ðT ; t; p1Þ þ?; ð13Þ

pðT ; eÞ ¼ p0ðT ; tÞ þ eU1ðT ; tÞ þ?: ð14Þ

Further, Vujanovic [3,4] imposes the requirement that @U=@p does not depend on the step of
approximation, which means that the field component Ul ðl ¼ 0; 1Þ are being changed with the
components pl linearly and uniquely:

@U

@p
¼

@U0

@p0
¼

@U1

@p1
¼ ?: ð15Þ

Using Eqs. (12)–(15) the basic equation transforms, after equating the terms containing the
same powers of the small parameter, into the following system:

@U0

@T
� o2

@U0

@p0
U0 � p0 ¼ 0; ð16Þ

@U1

@T
� o2

@U1

@p1
U1 � p1 ¼ �

@ %U0

@t
�

@ %U0

@p0
F ð %U0jp0 ; p0;T ; tÞ: ð17Þ

The left sides of these equations are similar to each other, and consequently their solutions have
the same form. The right side of Eq. (17) depends on the quantities that should be found on the
basis of the previously calculated solution of Eq. (16). It means that all of them should be
expressed in the conditioned form and solved along trajectory, i.e. for the value of the first
component of the momentum.
In accordance with Refs. [3–5] the solution of Eq. (16) is

%U0 ¼
p0

o
tanðoT þ C2Þ þ

AðtÞ cosC2 � BðtÞ sinC2

cosðoT þ C2Þ
: ð18Þ

Applying the Vujanovic’s theorem mathematically described by Eq. (9) it follows that

p0 ¼ o½�AðtÞ sinoT þ BðtÞ cosoT �: ð19Þ

In addition, the solution along trajectory is

%U0jp0 ¼ AðtÞ cosoT þ BðtÞ sinoT : ð20Þ

The detailed analysis of the application of the suggested solution (18) given in Refs. [1,3–5]
points out the existence of many formal transformations. It is better to write it down as

%U0 ¼
p0

o
tanðoT þ C2Þ þ

aðtÞ cosðbðtÞ � C2Þ
cosðoT þ C2Þ

: ð21Þ
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Applying condition (9), one obtains

p0 ¼ �oaðtÞ sinðoT þ bðtÞÞ; ð22Þ

and the solution along the trajectory is

%U0jp0 ¼ aðtÞ cosðoT þ bðtÞÞ: ð23Þ

Obviously, by using the new form of the conditioned solution (21), the solution in the first
approximation for a vibrational system is obtained in the usual form. The functions aðtÞ and bðtÞ
are to be calculated and they have meaning of the amplitude and phase of vibrations. They will be
found from the requirement of no secular terms.
In analogy to Eq. (21), the complete solution of the basic equation (17) is

U1 ¼
p1

o
tanðoT þ C2Þ þ

DðT ; tÞ
cosðoT þ C2Þ

; ð24Þ

where DðT ; tÞ is a new unknown function.
Obviously, the further consideration depends on the form of a non-linear function in Eq. (1).

Hence, some forms will be assigned to it and solution (23) will be found completely.

3.1. Parametrically excited systems

Since the problem of parametric resonance arises in many branches of physics and engineering,
an attempt to treat this system by the field method will be made.
Let system (1) be modelled by a modified Mathieus equation, which means that the non-linear

function has the form

F ðU ; t; pÞ ¼ �2a1U cos 2t þ f ðU ; pÞ; ð25Þ

where a1 is a positive given constant and f is a non-linear function of U and p:
The consideration will be restricted to the case of principal resonance that is o2E1:
So, after substituting Eqs. (21)–(24) into Eq. (17) one gets

dD

dT
¼ �

da

dt
cosðb� C2Þ þ a

db
dt
sinðb� C2Þ

þ
a1 cos 2T

o
sin 2ðoT þ C2Þ þ

sinðoT þ C2Þ
o

f ð %U0jp0 ; p0Þ: ð26Þ

To express the nearness of o to 1, a detuning parameter is introduced:

1 ¼ oþ es; s ¼ Oð1Þ: ð27Þ

Putting it into Eq. (26) and separating the terms containing cosC and sinC; respectively,
leads to

0 ¼ �
da

dt
cos bþ a

db
dt
sin b�

aa1
2o
sinð2st� bÞ

�
sinoT

o
f ðaðtÞ cos ðoT þ bðtÞÞ;�oaðtÞ sinðoT þ bðtÞÞÞ; ð28Þ
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0 ¼ �
da

dt
sin b� a

db
dt
cos bþ

aa1
2o
cosð2st� bÞ

�
cosoT

o
f ðaðtÞ cos ðoT þ bðtÞÞ;�oaðtÞ sinðoT þ bðtÞÞÞ: ð29Þ

At this point, among some algebraic transformations, the method of averaging to the function f
over a period 2p will be applied.
Consequently, one has

da

dt
¼ �

aa1
2o
sinð2st� 2bÞ �

1

2po

Z 2p

0

sin ff ðaðtÞ cosf;�oaðtÞ sin fÞ df; ð30Þ

a
db
dt

¼
aa1
2o
cosð2st� 2bÞ �

1

2po

Z 2p

0

cosff ðaðtÞ cosf;�oaðtÞ sin fÞ df; ð31Þ

where f ¼ oT þ b:
This pair of equations is of the same form as that found by the method of multiple scales [7] for

the case a1 ¼ 1:
The previously presented procedure shows advantage and elegance of the field method. The fact

that the field method is so effective and quick puts it shoulder to shoulder to the others widely
used approximate asymptotic methods, such as Krilov–Bogoliubov and Linstead–Poincare
method.

3.1.1. Example 1. Parametrically excited non-linear system

To analyze the influence of a parametric excitation to system (25) by the field method, the
function f ðx; pÞ is considered as

f ðU ; pÞ ¼ �2dp þ
X5
r¼2

arU
r; ð32Þ

where d; a1 and ar are constant parameters. Note that ar can be positive (soft spring) or negative
(hard spring).
Substituting Eq. (32) into Eqs. (30) and (31), the following system of the first order differential

equations is obtained:

da

dt
¼ �

aa1
2o
sinð2st� 2bÞ � da; ð33Þ

a
db
dt

¼
aa1
2o
cosð2st� 2bÞ �

1

o
3

8
a3a3 þ

5

16
a5a5

� �
: ð34Þ

It is seen that the amplitude of vibrations is not directly affected by non-linear rigidity, but it is
indirectly through the phase of vibrations, depending only on the cubic term and the term of the
fifth power.
System (33), (34) is suitable for analyzing steady state solution da=dt ¼ 0; dc=dt ¼ 0;

appearing when

sinc ¼ �
2od
a1

; ð35Þ
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cosc ¼
2so
a1

þ
2

a1

3

8
a3a3 þ

5

16
a5a5

� �
; ð36Þ

where c ¼ 2st� 2b:
By squaring and adding them, the frequency—response equation in the first approximation is

obtained:

1 ¼
4d2

a21
þ
4

a21
sþ

3

8
a3a2 þ

5

16
a5a4

� �� �2
: ð37Þ

In Ref. [7] such equation is analyzed for the case when a5 ¼ 0: Now examine the influence of
this parameter on the response of the system. The corresponding frequency–response curve is
plotted in Fig. 1. It is seen that for the case of a hard spring, the steady state amplitude increases if
the amplitude of excitation decreases and a detuning parameter increases. However, for the case
of a soft spring the opposite is true. Namely, decrease of a detuning parameter and increase of the
amplitude of excitation make the amplitude of vibrations higher.
To prove the exactness of the procedure, free non-linear damped vibrations as a special case will

be considered.
Special case: free non-linear damped vibrations. If a1 ¼ 0 Eqs. (33) and (34) give the first order

differential equations defining the amplitude and phase of free non-linear damped vibrations:

da

dt
¼ �da; ð38Þ

a
db
dt

¼ �
1

o
3

8
a3a3 þ

5

16
a5a5

� �
; ð39Þ
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whose solution is

%U0jp0 ¼ a cosðoT þ bðtÞÞ;

a ¼ a0e
�edt; b ¼

3a3
16od

a20ðe
�2edt � 1Þ þ

5a5
64od

a40ðe
�4edt � 1Þ þ b0; ð40Þ

In Eqs. (40), a0 is an initial amplitude, while bð0Þ ¼ b0:
The analytically obtained amplitude–time function is plotted in Fig. 2 for different values of the

small parameter. It is the envelope for curves obtained numerically.

3.2. Forced oscillations

Consider system (1) under the influence of an external excitation, taking the function F in the
form

F ¼ �k cosOt þ f ðU ; pÞ; ð41Þ

where k and O are constants, while f is a non-linear function of the field U and momentum p:
It is also assumed that primary resonance appears, i.e.

O ¼ oþ es; s ¼ Oð1Þ: ð42Þ

Substituting Eqs. (21)–(24) and (42) into Eq. (17) one has

dD

dT
¼ �

da

dt
cosðb� C2Þ þ a

db
dt
sinðb� C2Þ �

k

o
cosðoT þ stÞ cosðoT þ C2Þ

�
sinðoT þ C2Þ

o
f ð %U0jp0 ; p0Þ: ð43Þ
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parameter for free non-linear damped vibrations.
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Elimination of the secular terms by equating all terms next to cosC and sinC to zero, gives

0 ¼ �
da

dt
cos bþ a

db
dt
sin bþ

k

2o
sin st�

sinoT

o
f ð %U0jp0 ; p0Þ; ð44Þ

0 ¼ �
da

dt
sin b� a

db
dt
cos b�

k

2o
cos st�

cosoT

o
f ð %U0jp0 ; p0Þ: ð45Þ

Averaging the right sides of Eqs. (44) and (45) leads to the first order differential equations for
the amplitude and phase of vibrations:

da

dt
¼

k

2o
sinð2st� bÞ �

1

2po

Z 2p

0

sin ff ðaðtÞ cosf;�oaðtÞ sin fÞ df; ð46Þ

a
db
dt

¼ �
k

2o
cos ð2st� bÞ �

1

2po

Z 2p

0

cosff ðaðtÞ cosf;�oaðtÞ sin fÞ df; ð47Þ

where f ¼ oT þ b:
Obviously, they have the general form of the equations discussed in Ref. [5] by the methods of

Krilov–Bogoliubov–Mitropolski. They prove that the field method can be used for obtaining
these types of equations, which are, among the rest, suitable for studying steady state motion.

3.2.1. Example 2. Primary resonance in non-linear system
Consider the forced response of a single-degree-of-freedom system (1), (41) for the case when

f ðU ; pÞ ¼ �2d p þ
X5
2

arU
r; ð48Þ

where d and ar are constant parameters. The constants ar can be positive for the soft spring or
negative for the hard spring.
There are many studies dealing with this type of system [7–9]. It will be shown that the field

method can also be applied to the study of this system.
Substitution of it into Eqs. (46) and (47) gives

da

dt
¼

k

2o
sinð2st� bÞ � da; ð49Þ

a
db
dt

¼ �
k

2o
cosð2st� bÞ �

1

o
3

8
a3a3 þ

5

16
a5a5

� �
: ð50Þ

System (49), (50) can be further used for studying steady state solution da=dt ¼ 0; dg=dt ¼ 0;
which is described as

2oda ¼ k sin g; ð51Þ

2oasþ 3
4
a3a3 þ 5

8
a5a5

� �
¼ �k cos g; ð52Þ

where g ¼ st� b:
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Thus, the frequency–response equation of this system is

k2

4o2
¼ d2 þ sþ

3
4
a3a2 þ 5

8
a5a4

2o

� �2 !
a2: ð53Þ

Fig. 3 shows how the amplitude varies with the amplitude and phase of excitation. For all cases
(hard spring a3o0; a5o0; linear spring a3 ¼ a5 ¼ 0 and soft spring a3 > 0; a5 > 0) cusps have
appeared. Hence, the jump phenomenon, caused by non-linear phase–amplitude interaction in
Eq. (53) is realized. The non-linearity bends the curve surface to the right for hard and to the left
for soft spring.

Special case: free non-linear damped vibrations. If k ¼ 0 Eqs. (49) and (50) define the amplitude
and phase of free non-linear damped vibrations and have form (38), (39), derived for non-linear
free oscillations. It proves the correctness of the method discussed in this paper as well as its
generality.

4. Generalization of a field momentum approach

As the second case, the interpretation of the momentum p as a field (3) depending on time t and
the co-ordinate x:

p ¼ Fðt;xÞ; ð54Þ

is considered in order to obtain the first order differential equations for the amplitude and phase
of vibrations for the weakly non-linear system (1).
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Fig. 3. Frequency (sigma)-amplitude of excitation ðkÞ-response (amplitude) curves for forced non-linear vibrations.
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The corresponding basic equation (4), obtained by the total time derivation of Eq. (54) and
using (1), is

@F
@t

þ
@F
@x

Fþ o2x � eF ðx;F; tÞ ¼ 0: ð55Þ

In analogy with the previously presented procedure and the definitions for fast and slow time
given by Eq. (12), the approximate solutions for the field F and x in terms of the different scales
are

Fðt; x; eÞ ¼ F0ðT ; t; x0Þ þ eF1ðT ; t; x1Þ þ?; ð56Þ

xðt; eÞ ¼ x0ðT ; tÞ þ ex1ðT ; tÞ þ?: ð57Þ

The next assumption, taken in analogy with Eq. (15), is that component Fl ðl ¼ 0; 1Þ are being
changed with respect to xl linearly and uniquely:

@F
@x

¼
@F0
@x0

¼
@F1
@x1

¼ ?; ð58Þ

This supposition is very important for simplifying the further procedure.
In addition, validity of Eq. (54) orders the following compatibility conditions:

F0ðx0T ; tÞ ¼
@x0

@T
; ð59Þ

F1ðx1T ; tÞ ¼ Fn

1ðx1;T ; tÞ þ
@x0

@t
; ð60Þ

where Fn
1 ¼ @x1=@T :

They are obtained by finding the total time derivative of Eq. (57) and equating it with Eq. (56)
for all powers of e:
With Eqs. (56)–(60), the basic equation (55) gives the following system of the partial differential

equations:

@F0
@T

þ
@F0
@x0

F0 þ o2x0 ¼ 0; ð61Þ

@Fn
1

@T
þ

@Fn
1

@x1
Fn

1 þ o2x1 ¼ �
@ %F0
@t

�
@2x0
@T@t

�
@x0

@t
@ %F0
@x0

þ F ðx0; %F0jp0 ;T ; tÞ: ð62Þ

The algorithm for obtaining an asymptotic solution in the first approximation is analogous to
that described in the field co-ordinate approach. Namely, the first thing to do is to find the
complete solution of Eq. (61) and then calculate the right side of Eq. (62) on the basis of the
elimination of the secular terms.
The conditioned form solution, according to Refs. [3,4], is

%F0 ¼ �x0o tanðoT þ C2Þ þ
AðtÞ sinC þ BðtÞ cosC2

cosðoT þ C2Þ
: ð63Þ

It will be shown that assuming it in the form

%F0 ¼ �x0o tanðoT þ C2Þ þ
aðtÞo sinðbðtÞ � C2Þ
cosðoT þ C2Þ

; ð64Þ
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considerably simplifies the process of solution. In Eq. (64), aðtÞ and bðtÞ are the unknown
functions.
The application of the Vujanovic’s theorem described by Eqs. (9)–(64) gives

x0 ¼ aðtÞ cos ðoT þ bðtÞÞ: ð65Þ

This solution has the well-known form of a solution in the first approximation.
The solution along trajectory is

%F0jx0 ¼ �aðtÞo sinðoT þ bðtÞÞ: ð66Þ

Solutions (65) and (66) are completely in agreement with those obtained by the field co-ordinate
approach (22), (23) and no complications are included despite the occurrence of the compatibility
conditions.
Assume the solution of the left side of Eq. (62) to be as follows:

F1 ¼ �x1o tanðoT þ C2Þ þ
DðT ; tÞ

cosðoT þ C2Þ
; ð67Þ

where DðT ; tÞ is an unknown function. Further consideration will be continued after defining the
form of a non-linear function in Eq. (1).

4.1. Free non-linear vibrations

Free weakly non-linear oscillations are studied in Refs. [4,5] for the case of a non-linear
quadratic term in the mathematical model of the system. Although the obtained results are in
agreement with those found by some other methods, it is noticeable that the algorithm includes a
number of steps confusing the reader.
Consequently, a condensed procedure for obtaining the solution will be developed by applying

the field momentum approach for system (1), where F ¼ F ðx; pÞ: Substituting this function and
Eqs. (65)–(67) into Eq. (62), gives:

dD

dT
¼
da

dt
sinðb� C2Þ þ a

db
dt
cosðb� C2Þ þ

da

dt
sinð2oT þ bþ C2Þ

þ a
db
dt
cosð2oT þ bþ C2Þ �

cosðoT þ C2Þ
o

F ðx0; %F0jp0Þ: ð68Þ

The requirement of removing the secular terms on the left side of Eq. (68) includes equating all
terms containing cosC and sinC to zero. Thus,

0 ¼
da

dt
sin bþ a

o
2

db
dt
cos b

þ
cosoT

o
FðaðtÞ cosðoT þ bðtÞÞ;�oaðtÞ sinðoT þ bðtÞÞÞ; ð69Þ

0 ¼ �
da

dt
cos bþ a

o
2

db
dt
sin b

�
sinoT

o
FðaðtÞ cosðoT þ bðtÞÞ;�oaðtÞ sinðoT þ bðtÞÞÞ: ð70Þ
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After averaging, the first order differential equations for the amplitude and phase are obtained:

da

dt
¼ �

1

2po

Z 2p

0

sin fF ðaðtÞ cos f;�oaðtÞ sin fÞ df; ð71Þ

db
dt

¼ �
1

2po

Z 2p

0

cosfF ðaðtÞ cosf;�oaðtÞ sin fÞ df; ð72Þ

where f ¼ oT þ b: Comparing these solutions with those obtained in Refs. [8,9], one finds that
they are equivalent.
It is also noticeable that Eqs. (30) and (31) for the absence of a parametric excitation a1 ¼ 0 and

Eqs. (46) and (47) for the absence of an external excitation k ¼ 0 are equivalent to Eqs. (71) and
(72). This is another fact contributing to the generality of the field method.
Obviously, the application of the field momentum approach gives the required solution very

quickly, on its own way. Its technique is made to be schematic, which can now be used in the study
of non-linear vibration problems without any, previously existing prejudice.

4.2. Non-linear oscillator with slowly varying parameters

In Ref. [4], a linear oscillator with slowly varying frequency is studied by taking the field co-
ordinate as a field. This consideration will be extended to a non-linear system by choosing the field
momentum for the field and showing that the procedure presented in this paper keeps its
formalism.
So, now study system (1) written in form (2) where o ¼ oðtÞ and F ¼ F ðx; p; tÞ; while the slow

time is t ¼ et and e51:
However, the fast time scale, as suggested in Ref. [8] should be determined as

T ¼
1

e
gðtÞ: ð73Þ

The asymptotic representations for F and x are assumed in form (57).
Using Eqs. (56)–(60) and (73), the basic equation (55) transforms into

@F0
@T

dg

dt
þ

@F0
@x0

F0 þ o2ðtÞx0 ¼ 0; ð74Þ

@Fn
1

@T

dg

dt
þ

@Fn
1

@x1
Fn

1 þ o2ðtÞx1 ¼ �
@ %F0
@t

�
@2x0
@T@t

dg

dt
�

@x0

@t
@ %F0
@x0

þ F ðx0; %F0jp0 ;T ; tÞ: ð75Þ

The supposed form of the complete solution of (74) is

F0 ¼ �x0lðtÞ tanðT þ C2Þ þ
MðtÞ

cosðT þ C2Þ
; ð76Þ

where lðtÞ and MðtÞ are to be found.
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After substituting Eq. (76) into Eq. (74), one has

0 ¼ x0 �
dg

dt
lðtÞ þ o2ðtÞ þ tan2ðT þ C2Þ l2ðtÞ � lðtÞ

dg

dt

	 
� �

þ MðtÞ
sinðT þ C2Þ
cosðT þ C2Þ

dg

dt
� lðtÞ

	 

: ð77Þ

Since this relation should be satisfied for all x0; ðT þ CÞ and M; the asked functions are
obtained:

lðtÞ ¼ oðtÞ;
dg

dt
¼ oðtÞ; ð78Þ

allowing the process of finding the solution to be continued. Thus, the conditioned form
solution is

%F0 ¼ �x0oðtÞ tanðT þ C2Þ �
aðtÞoðtÞ sinðbðtÞ � C2Þ

cosðT þ C2Þ
; ð79Þ

while the complete solution for the first component of the field will be taken in the following form:

Fn

1 ¼ �x1o ðtÞ tanðT þ C2Þ þ
DðT ; tÞ

cosðT þ C2Þ
: ð80Þ

Solution (79) differs from one given in Ref. [4], but it will be shown that the form is more
suitable and, as it was already proven in the previous section, simplifies the consideration making
it more familiar.
Application of Eq. (9) expressing Vujanovic’s theorem to Eq. (79) leads to the solution in form

Eq. (65), while the complete solution of Eq. (74) is Eq. (66). Using these relations, Eq. (75)
transforms into

oðtÞ
dD

dT
¼
do
dt

a cosðT þ bÞ sinðC2 þ bÞ

þ oðtÞ
da

dt
cosðT þ bÞ sinðbþ C2Þ

þ aoðtÞ
db
dt
cosðb� C2Þ þ aoðtÞ

db
dt
cosð2t þ bþ C2Þ

�
cosðoT þ C2Þ

o
F ðx0; %F0jp0Þ: ð81Þ

Eliminating the secular terms, it follows that

0 ¼
a

2

do
dt

þ
da

dt
oþ sinðT þ bÞFðaðtÞ cosðT þ bðtÞÞ;�oaðtÞ sinðT þ bðtÞÞÞ; ð82Þ

0 ¼ ao
db
dt

� cosðT þ bÞFðaðtÞ cosðT þ bðtÞÞ;�oaðtÞ sinðT þ bðtÞÞÞ: ð83Þ

ARTICLE IN PRESS

I. Kovacic / Journal of Sound and Vibration 264 (2003) 1073–10901086



After some transformations, including averaging, one finds

da

dt
¼ �

a

2o
do
dt

�
1

2po

Z 2p

0

sin ff ðaðtÞ cosf;�oaðtÞ sinfÞ df; ð84Þ

a
db
dt

¼ �
1

2po

Z 2p

0

cosff ðaðtÞ cosf;�oaðtÞ sin fÞ df; ð85Þ

where f ¼ T þ b:
The forms of Eqs. (84) and (85) are equivalent to the ones in Refs. [8,9] and for the case when o

is a constant they become equal to Eqs. (71) and (72) derived for the case of free vibrational
system.

4.2.1. Example 3: a wagon-measuring mechanism system
As the example of a system with slowly varying parameters, a wagon-measuring mechanism

system [10] will be studied. The mathematical model of this system for the non-linear model of
rigidity, has form (1), where

o2ðtÞ ¼
k1

m0ð1þ tÞ
; ð86Þ

F ðx; p; tÞ ¼
p

ð1þ tÞ
þ

c1p

em0ð1þ tÞ
�

k1

qð1þ tÞ
x þ

qu

k1

	 
3
�

u

ð1þ tÞ
; ð87Þ

while k1; m0; c1; q and u are constant parameters of the system, e51 ðe ¼ q=m0Þ and t is slow time.
Fast time, in accordance with Eqs. (73) and (74), is

T ¼
2

e
k1

m0
ð
ffiffiffiffiffiffiffiffiffiffiffi
1þ t

p
� 1Þ: ð88Þ

Thus, system (84) and (85) is

da

dt
¼ �

a

4ð1þ tÞ
�

1

2pð1þ tÞ

Z 2p

0

D1 sin f df; ð89Þ

a
db
dt

¼ �
1

2po

Z 2p

0

D2 cosf df; ð90Þ

where D1 and D2 stand for

D1 ¼
oa

1þ t
sin fþ

c1oa

em0ð1þ tÞ
sin fþ

q2u3

k21ð1þ tÞ

	 

;

D2 ¼
k1

1þ t
a3 cos3f

q
þ
3qu2a cosf

k21

� �	 

;

while f ¼ bþ T : Note that in system (89), (90) all terms become equal to zero after integration
and hence are neglected.
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So, motion of system (1), (86), (87) with initial conditions xð0Þ ¼ a0; ’xð0Þ ¼ 0 is

x ¼ aðtÞ cos
2

e

ffiffiffiffiffiffi
k1

m0

s
ð
ffiffiffiffiffiffiffiffiffiffiffi
1þ t

p
� bÞ

 !
; ð91Þ

aðtÞ ¼
1

ð1þ tÞ1=4þc1=ð2em0Þ

q2u3
ffiffiffiffiffiffi
m0

p
k
5=2
1

1
3
4
þ c1=ð2em0Þ

ð1� ð1þ tÞ1=4þc1=ð2em0ÞÞ þ a0

" #
:

It is seen that the non-linearity affects the amplitude directly. Its influence on amplitude appears
as an additional term beside the term that contains the coefficient of internal damping c1;
increasing it.
Fig. 4 shows a good agreement between the numerical solution of system (1), (86), (87) and

analytical solution (91) for the set of parameters written above the picture.
Special case: linear system. Analyze the case when the stiffness is modeled linearly, i.e.,

’x ¼ p; ’p ¼ �
k1

m0ð1þ tÞ
x � e

p

ð1þ tÞ
: ð92Þ

According to the previously given field method formalism, motion of system (92) with initial
conditions xð0Þ ¼ a0; ’xð0Þ ¼ 0 is,

x ¼ aðtÞ cos
2

e

ffiffiffiffiffiffi
k1

m0

s
ð
ffiffiffiffiffiffiffiffiffiffiffi
1þ t

p
� 1Þ

 !
; aðtÞ ¼

a0

ð1þ tÞ1=4
: ð93Þ

Fig. 5 shows the relative error between the numerical solution of Eq. (92) and the analytically
obtained solution (93) for the set of parameters k1 ¼ 1; m0 ¼ 10; xð0Þ ¼ a0 ¼ 0:5; ’xð0Þ ¼ 0 and
different values of the small parameter e: It is obvious that the agreement between these two
solutions is acceptable and that the error gets smaller as time passes.
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5. Conclusion

In this paper, generalization of the field method, through its approaches—field co-ordinate and
field momentum, to non-Hamiltonian systems is carried out. The method is applied to different
types of weakly non-linear vibration problems: forced, parametrically excited, free vibrational
system and system with slowly varying parameters.
It is concluded:

* In spite of usual consideration being a complication if some method reduces solving the system of
ordinary differential equations to solving a partial differential equation, it has been shown that in
the case of the field method, such reduction, together with applying more suitable form of the
complete solution of the basic partial equation, gives the sought solution elegantly and quickly.

* Combining the concept of the field method with multiple scales, the first order differential
equations for the amplitude and phase of vibrations are obtained. They have the same form as
the equations obtained by some others methods (Bogoliubov–Mitropolski, method of multiple
scales).

* Elegance and schematics of the algorithm of the field method set off this method as a suitable
for studying weakly non-linear systems.

Thus, the field method excels in its primary purpose to treat non-conservative systems in
Hamiltonian mechanics and generalizes.
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